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Noise-enhanced neuronal reliability
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This work shows that noise can enhance the discharge time reliability in Hodgkin-Huxley neuron models
stimulated by weak periodic and aperiodic inputs. By expanding the Fokker-Planck equation of an elementary
model for excitable systems, the dependence of the optimal noise intensity on input characteristics is discussed.
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I. INTRODUCTION

Signal processing in nervous systems takes place in
presence of external perturbations and internal fluctuatio
broadly referred to as noise@1#. Neurons are nonlinear de
vices whose response can be strongly affected by the n
@2#. Surprisingly, such alterations are not necessarily de
mental. Numerous studies@3,4#, supported by behavioral evi
dence@5#, have established that noise can play a posit
functional role by assisting neurons in the detection or tra
mission of weak inputs. Such observations have opened
door to possible biomedical applications@6#. One of the
mechanisms accounting for the role of noise is through
reduction of nonlinear distortions between stimuli and
discharge rate of neurons@2,7–9#, which improves input-
output fidelity. In this sense, noise can assist ‘‘rate codin

In many instances, rapid and precise computations in
vous systems rely on a different code, namely temporal c
ing @10#. In this case, the stimulus characteristics are enco
into discharge timings rather than averaged firing rates.
operate such a code, a neuron must be reliable in the s
that there must be little variability in the discharge tim
evoked by repetitive presentation of a given input~ @11–13#
and the review@14#!. Otherwise, distinction between differ
ent signals is not possible from the observation of the d
charge times. Given that jitter in the spike timing deteriora
temporal code, the prevailing view is that noise is one of
key limiting factors in the operation of such codes@15,16#.

The main purpose of the present paper is to show that
is not necessarily so. More precisely, in the same way
noise can enhance neuronal fidelity, it can also enhanc
discharge time reliability to weak inputs. To this end, we fi
examine the influence of noise on the discharge times
weakly forced canonical neuron model, namely the Hodgk
Huxley ~HH! model@17#. Previous studies have reported th
noise can increase spike timing precision in ensemble
HH units stimulated by a single-weak excitatory post syn
tic potential@18–20#. Analyzing the response to this form o
input is a first step towards characterizing the influence
noise on temporal coding. In contrast with these, the pre
study deals with periodic and aperiodic input signals sim
to the ones that occur in nervous systems. More precis
periodic modulations have been observed in systems suc
the owl auditory system@21# and the electrosensory syste
1063-651X/2001/64~4!/041904~9!/$20.00 64 0419
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of electric fish@22#, both of which perform highly precise
computational tasks, and aperiodic ones are common in
tical neurons as a result of the large number of connecti
such neurons receive@23#.

Finally, we support our numerical investigations in th
HH model by analyzing noise enhanced reliability using t
Fokker-Planck equation~FPE! of the active rotator~AR!
@20,24–27#, an elementary model for excitable system
widely used in the determination of the influence of nois
Furthermore, this enables us to discuss the dependence o
optimal noise level on input period and amplitude. This is
issue of importance~i! to determine whether nervous sy
tems operate in conditions suitable for noise-enhanced
ability, and ~ii ! for potential usage of noise in biomedic
devices if improved reliability is desirable.

This paper is organized as follows. First the influence
noise on reliability in the HH model is presented and co
pared with enhanced fidelity~Sec. II!. Then, the same phe
nomenon is analyzed in the AR, using the FPE and
expansions~Sec. III!. Finally conclusions are presente
~Sec. IV!.

II. THE HODGKIN-HUXLEY MODEL

We report simulation results of the HH model~Appendix
A! under two conditions: one receiving sinusoidal input a
another receiving aperiodic input. The aperiodic signal wa
sample path of an Ornstein-Uhlenbeck process.

Two quantities were computed to evaluate the relat
between the input signals and the spike train generated
the HH model. One is the input-output correlationC0, and
the other the discharge time reliabilityRel .

The first one measures input-output fidelity defined as
linear correlation between the inputs(t) and the outputy(t)
@7,9#

C05max
t

$s~ t !y~ t1t!%, ~1!

where the overbar denotes average over several indepen
trials. For a periodic inputs(t)5A sin(Vt), we evaluateC0
as @9#
©2001 The American Physical Society04-1
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C05max
t

H 1

TE0

T

A sin~Vu!y~u1t!duJ
5AAa1

21b1
2/2, ~2!

whereT52p/V is the stimulation period, anda1 andb1 are
the first Fourier coefficients of the outputy(t) computed as

a15
2

TE0

T

cos~Vt !y~ t !dt, ~3!

b15
2

TE0

T

sin~Vt !y~ t !dt. ~4!

Conversely, for an aperiodic inputs(t), we computedC0 as

C05
1

T (
m51

M

s~ tm!, ~5!

wheretm (mP@1,2, . . . ,M #) are the time of discharges an
T is the duration of the aperiodic stimulus. This is the cro
correlation between output spike train and the input sig
evaluated at zero time delay. It measures whether the num
of spikes fired within some time interval reflects the variati
in the input signal. Roughly speaking, a large positiveC0
indicates that the increases and decreases in the inpu
concurrent with similar evolutions in the firing rate.

The standard experimental protocol to evaluate neuro
reliability consists in presenting repetitively a given stimu
tion segment to a neuron. Then the discharge times in e
trial, measured from the stimulation onset, are compa
with one another. When the discharges of the different tr
are aligned, the discharge timing is referred to as precise
the firing as reliable. The above procedure has been wid
used in experiments dealing with various levels of sig
processing in nervous systems@11–13#. Besides a qualitative
assessment of reliability, various quantities have been u
to quantify this property@12,13,18#.

The first step in the evaluation of these quantities is
‘‘pool’’ the spike trains from the independent trials togethe
in other words, to consider the point process formed by su
ming the point processes representing the discharge t
during each trial. From a modeling point of view, this
equivalent to considering the pooled spike train generated
an ensemble of noninteracting units, receiving all the sa
input signal, so that our work applies both to the reliability
single units and to synchronous firing within ensembles.

The second step for measuring reliability consists in e
mating the instantaneous firing rate of the pooled spike t
or, equivalently, of the ensemble. This is done by convolv
the point process with a filter. Various filters have been u
in previous studies@12,13,18#. One purpose for filtering the
spike train is to smooth the data. However, the key argum
for selecting a filter is that discharge times from trial to tr
or coming from different neurons within an ensemble a
unlikely to be perfectly aligned, but they can occur clo
enough to one another so that their influences on a do
stream neuron effectively add up. Filtering the spike tr
allows the addition of the effects of nearby discharges in
04190
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same way as in postsynaptic membranes. Based upon
consideration, we follow Hunteret al. @13# in that, when
needed, we filter spike trains with an exponential filter. T
choice is motivated by two factors, one that the exponen
filter is a reasonable approximation of the postsynaptic ef
of a presynaptic firing, and, the other, that it is computatio
ally advantageous for rapid estimation of the instantane
firing rate.

The third step for evaluating reliability consists in com
puting the measure itself. While several different measu
have been used@9,12,13,18#, they are all based upon one ke
consideration, which is also the fundamental difference
tween these measures and others such as correlationC0.
More precisely, the reliability measures quantify the sha
ness and sizes of peaks of the instantaneous firing ratere-
gardlessof the input signal. In other words, these measu
indicate whether discharges in the pooled spike train w
synchronous~after the filtering!. They do not measure
whether these synchronous firings occur when the input
nal presents, say, a transient increase, or any other spe
feature. In this sense, high reliability measures indicate
to a given stimulation there corresponds a given sequenc
discharge times, so that temporal coding is possible for s
classes of inputs. However, these measures do not shed
on the ‘‘coding’’ relation between the input signal and th
spike train. This contrasts with a measure such asC0, which
evaluates whether there is a linear relation between the in
signal and the firing rate.

In the following, we detail the reliability measure used
our paper, which is the one introduced by Hunteret al. @13#.
The reliabilityRel measures the propensity of neurons with
an ensemble to fire synchronously in response to a gi
stimulation, or equivalently, that of a given neuron to fire
the same times when stimulated by the same input. The c
putation of the reliability is based upon that of the varian
r2 of the outputy(t).

The outputy(t) is convolved with an exponential filter a

yf~ t !5E
0

t

y~ t2t!l exp@2lt#dt5l (
m51

M

exp@2l~ t2tm!#,

where 1/l is the characteristic time of the synchrony amo
the ensemble. Substitutingy(t) with yf(t), we have

r25
1

TE0

T

yf
2~ t !dt2F 1

TE0

T

yf~ t !dtG2

. ~6!

Using the above, the reliability is defined as

Rel5r2/N̄, ~7!

where, for a periodic input,N̄ is the mean number of dis
charges per input period, while for an aperiodic input, it re
resents a normalization factor, computed as:N2Ml/(2T)
2N2M2/T2 where T is the simulation duration,M is the
number of spikes, andN the number of spike trains@13#. For
a periodic input,Rel can be expressed in terms of the Four
coefficientsak andbk of the unfiltered signaly as
4-2
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FIG. 1. Reliability andC0 to periodic and aperiodic input in an HH model. Reliability~top row! andC0 ~bottom row! as a function of
noise intensity. Input currents are a sinusoid~left column! and sample path of an Ornstein-Uhlenbeck process~right column!. All abscissas
are (mAAms/cm2). Ordinates in the upper row are unitless, and in the lower row are mA/(ms3cm2). Stimulus parameters for periodic inpu
are V50.22 (rad/ms),A50.4 (1),0.8 ~3!, 1.4 (* ), and 1.8 (h) (mA/cm2), and those for aperiodic input are time constantt
51 (ms), andA50.8 (1),1.5 ~3!, and 2 (* ) (mA/cm2). The time-scale parameterl of reliability are 5 and 1~ms21! for periodic and
aperiodic inputs, respectively. Simulations of 2000~left column! and 1000~right column! HH units were run and the output spike train
all units were pooled to form a single spike train. All simulations were started at the resting state and run using the standard Eule
with a time step of 0.005 ms for a duration of 50 input cycles~left column! and 1 s~right column!, respectively. Transient spikes were n
discarded. Discharges were defined as the membrane potential crossing upwards through 50 mV at least 3 ms after the previous
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Rel5
2

a0~l2a0! (
k>1

l2

l21k2V2
~ak

21bk
2!. ~8!

For subthreshold periodic or aperiodic inputs, bothC0 and
Rel have a nonmonotonic dependence on the noise inten
They both decay at low and large noise intensities, a
present a unique maximum at an intermediate noise le
~Fig. 1!. For C0, this is noise-enhanced fidelity, a phenom
enon that has been previously studied in detail@7–9#. The
lower maximal C0 associated with the aperiodic input
mainly due to the fact that this signal contains much fas
frequency components than the periodic one, and that th
high frequencies are poorly transmitted by neurons. Th
the fidelity is lower in the aperiodic case compared with
periodic.

That Rel is maximal at an intermediate noise level, i.
noise-enhanced reliability, constitutes a different effect
noise on neuronal coding. Comparison between no
enhanced fidelity and reliability highlights the key simila
ties and differences between these two phenomena.

Besides the fact that, for weak inputs, when plotted a
function of noise intensity,C0 andRel , both exhibit a hum-
plike shape, these two quantities display similar depende
on input intensity. When the latter is increased,C0 andRel ,
both increase at all noise levels. However, the optimal no
intensities at which maximal fidelity and reliability ar
reached differ. The former is substantially larger than
latter, and the difference widens with the input amplitud
Maximal fidelity is reached for roughly the same noise le
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at all input amplitudes. This is not the case for maxim
reliability: the optimal noise level tends to zero as the sig
reaches threshold level. This tendency is common in b
periodic and aperiodic input conditions.

III. THE ACTIVE ROTATOR

Our numerical analysis of the response of the HH mo
established that noise enhanced-reliability occurs for b
periodic and aperiodic signals, and revealed the simila
between these two cases. Our main concern in the remai
of this paper is to investigate the mechanisms underly
noise-enhanced reliability. To this end, we focus on perio
stimulation applied to the noisy AR, a simplified model f
excitable systems.

The state of an AR model is defined by a pointw on a unit
circle. The autonomous dynamics are given bydw/dt51
2a sin(w), so that whena.1, there are two fixed points, on
stable and the other unstable. A state starting at all po
along the circle except the unstable point eventually asym
totes to the stable point. The unstable point acts as a thr
old of an excitable system because points starting at oppo
sides of the unstable point return to the resting state in
posite rotation. The dynamics of an AR receiving a perio
input and noise is then governed by

dw

dt
512a sin~w!1A sin~Vt !1j~ t !, ~9!

wherej is white Gaussian noise, satisfyingE@j(t)#50 and
E@j(t)j(s)#52Dd(t2s). The Fokker-Planck equation as
sociated with Eq.~9! is @20,24–27#:
4-3
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]n

]t
~w,t !52

]F

]w
~n~w,t !,t ! ~10!

5L0@n~w,t !#1ALext@n~w,t !,t#, ~11!

where n(w,t)dw represents the proportion of units with
(w,w1dw) at time t and F@n(w,t),t#5@12a sin(w)
1Asin(Vt)#n(w,t)2D(]n/]w)(w,t) is the flux. In Eq.~11!, L0
andLext represent the autonomous and input-dependent c
ponents of the right-hand side of the FPE

L0~n!5
]

]w H 2 f ~w! n1D
]

]w
nJ , ~12!

Lext~n,t !52sin~Vt !
]n

]w
, ~13!

where f (w)512a sin(w).
The output rateJ(t) of the AR can be computed from th

solution of the FPE as the flux through 3p/2, that is,J(t)
5F@n(3p/2,t),t#. From this, we compute the input-outp
correlationC0 and the reliabilityRel using Eqs.~2! and ~8!
with ak andbk representing thekth Fourier coefficients ofJ.

We systematically computed the flux of an AR mod
receiving periodic modulation for various noise intensit
and modulation amplitudes@28#. Control cases were als
computed from numerical simulations of periodically forc
noisy AR’s, and satisfactory correspondence between th
quantities and the estimates from the flux of the FPE w
observed~not shown!. Figure 2 shows that this system repr
duces the behavior of the HH model in the sense that~i! both
C0 andRel are hump-shaped when plotted against noise
tensity and~ii ! the curves display similar dependence on
put amplitude as for the HH. The amplitude of the stimu
tion for the AR model was close to sixfold smaller than th
for the HH model. Therefore, while the ranges ofC0 in the
two models are different, those ofAa1

21b1
2 are of the same

order.
Using the FPE of the AR, we examined the dependenc

the optimal noise levels maximizingC0 and Rel on input
amplitude. Figure 3 summarizes the results of the numer
investigations. The loci of the optimal noise maximizing r
liability Rel andC0 ~represented, respectively, byd ands

in Fig. 3! are plotted in theD-A plane, whereD is the noise
intensity andA is the input amplitude. Similar to HH mode
simulations, the reliability had a peak at smaller noise co
pared toC0. The dependence of these peaks on the in
amplitude was also reproduced in the AR model. The o
mal noise intensity of reliability shifted towards zero noise
modulation amplitude was increased, in contrast with tha
C0, which remained within an intermediate range, even wh
modulation reached suprathreshold levels. This differenc
in fact a reflection of the differences in the mechanisms
derlying noise-enhanced reliability and the well-documen
linearization by noise. In the following, we investigate t
noise-induced changes in neuronal behavior that are res
sible for enhanced reliability.
04190
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Our starting point is our previous studies@19,20,29# that
revealed that~i! canonical neuronal models such as the H
equations, the AR but also the FitzHugh-Nagumo model,
the leaky integrate and fire unit, all undergo a noise-indu
transition as noise intensity is increased, and~ii ! this phe-

FIG. 2. Reliability andC0 to periodic input in an AR model.
Reliability ~upper panel! andC0 ~lower panel! as a function of noise
intensity. Input currents are a sinusoid of angular velocityV
50.3 @rad/ms# and amplitudes A50.15 (1), 0.20 (3),
0.25 (* ), and 0.30 (h) (rad/ms), respectively. Abscissas in bo
panels are noise intensity~rad/Ams) and ordinates are dimension
less~upper panel! and rad/ms2. Both reliability andC0 were com-
puted from the flux crossingw53p/2. The time-scale parameterl
of reliability is (ms21). Numerical computations of the flux wer
carried out by simulating the approximation of the FPE using
fourth-order Runge-Kutta method with a time step of 0.01 (D
<0.3) and 0.005 (D.0.3). All Fourier coefficients of the prob
ability density function, expanded up to 30th order, were initializ
at zero. After running 50 ms, data points over a duration of 5 in
cycles were analyzed. The single AR model parameter isa51.2.

FIG. 3. Optimal noise at various input amplitudes in an A
model. Each point is plotted at the noise intensity where reliabi
~d! and C0 (s) are maximal for each input amplitude. The a
scissa is noise intensity (rad/Ams) and the ordinate is modulatio
amplitude~rad/ms!. The model and simulation parameters are t
same as in Fig. 2.
4-4
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NOISE-ENHANCED NEURONAL RELIABILITY PHYSICAL REVIEW E64 041904
nomenon accounts for the noise enhanced discharge
precision in response to a single subthreshold postsyna
potential. In the following, we show that a similar mech
nism accounts for enhanced reliability in response to ot
classes of stimuli such as subthreshold periodic ones. To
end, we proceed as follows. The noise induced-transitio
characterized by a change in the stationary distribution
model variables from Gaussian-like to non-Gaussians.
have shown that a signature of this transition is a bifurcat
in the deterministic equations approximating the dynamics
the moments~the means and variances! of the model vari-
ables prior to the transition. Since our previous stud
@19,20,29# considered the effect of noise alone on these s
tems, it is not possible to directly apply the results to un
receiving, say, a maintained periodic current stimulation.
address this issue, we need to consider the moment equa
in the presence of both the noise and the external input. T
is done in the case of the periodically forced AR in the f
lowing.

The key observation that allows the derivation of the m
ment equations is that at low-noise intensities, the den
n(w,t) solution of Eq.~11! is well approximated by a Gauss
ian. In other words, given a single realization of the forc
AR receiving a weak noise, the probability that at timet, the
AR is within some phase range (w,w1dw) is given by
n(w,t)dw where, under the Gaussian assumption

n~w,t !.
1

A2pv~ t !
expH 2

1

2

@w2u~ t !#2

v~ t ! J , ~14!

where u(t) and v(t) represent the mean and variance
w(t). Equivalently, given a large ensemble of noninteract
AR’s, the proportion of units whose phase is within (w,w
1dw) is given byn(w,t)dw. For the unforced AR, this as
sumption has been used in our previous study@20#. This
approximation also applies to the forced AR, as a spe
case from a general result on weak white-noise perturbat
of dynamical systems@30#.

The dynamics of the mean and variance ofn are given by:

du

dt
512aE@sin~w!#1A sin~Vt !, ~15!

dv
dt

522aE@~w2u!sin~w!#12D, ~16!

whereE denotes expectation. Using Eq.~14!, we can evalu-
ate Eqs.~15!–~16! as @25,20#

du

dt
512a sin~u!expS 2

v
2D1A sin~Vt !, ~17!

dv
dt

522a cos~u!v expS 2
v
2D12D. ~18!

When A50, solutions of Eqs.~17! and ~18! display one of
two behaviors depending on the value ofD. More precisely,
they remain bounded or diverge for noise intensities be
and beyond the noise induced transition, respectively.
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separation between these two different asymptotic behav
comes in the form of a deterministic bifurcation@20,29#. We
have observed a similar separation in the presence of p
odic forcing, i.e.,AÞ0. The following paragraphs describ
this aspect and discuss its relation with enhanced reliabi

When AÞ0, solutions of Eqs.~17!–~18! display one of
three behaviors depending on the values ofD andA. These
are~i! for low A andD ~lower-left region in Fig. 4!, bounded
oscillations of bothu and v, with u oscillating around the
stable fixed point of the unforced AR,~ii ! for large A, and
small D ~upper-left region in Fig. 4!, u rotates around the
unit circle, while v displays bounded oscillations, and~iii !
for largeD ~right region in Fig. 4!, the two variablesu andv
diverge. In the first regime, firing is sparse and the AR d
plays mainly subthreshold oscillations. In the second reg
firing takes place, either becauseA is suprathreshold or be
cause there is enough noise. However, the fact thatv remains
bounded reflects the fact that the noise is not large enoug
completely dominate the firing. This latter situation tak
place in the third region.

The noise-induced transition corresponds to the bor
delineating the first region. It represents the change in
system from a mainly subthreshold regime to one in wh
firing takes place. Remarkably, the locus of this border in
D-A plane is similar to the locus of the optimal noise leve
obtained directly from the FPE~Fig. 3!. The quantitative
difference between the two curves is due to two factors. O
comes from the fact that Eqs.~15!–~16! are an approxima-
tion that captures mainly qualitative changes in the sys
behavior rather than quantitative changes. The other is t
in fact, maximal reliability is reached after the onset of firin
at the noise-induced transition, so that the optimal noise
els are larger than the ones corresponding to the no
induced transition.

The reason why the noise-induced transition separates
regions in which the noise improves and deteriorates n
ronal reliability can be understood from the characteristics
the two regimes. In the first one, the sensitivity of neurons
weak inputs increases due to the noise-induced fluctuat

FIG. 4. Various dynamics of the moments of an AR mod
Regions where the meanu(t) remains subthreshold~SUB!, where
u(t) oscillates around the circle while variancev(t) remains
bounded~OSC!, and where bothu(t) and v(t) diverge to non-
numerical values~DIV ! are delineated in the input amplitudeA
versus noise intensityD two-parameter plane. The abscissa is no
intensity (rad/Ams) and the ordinate is modulation amplitude~rad/
ms!. The time step is 0.01 ms. Model and input parameters are
same as in Fig. 2.
4-5
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SEIJI TANABE AND K. PAKDAMAN PHYSICAL REVIEW E 64 041904
that bring the system close to its firing threshold. The k
point here is that in this regime, noise alone causes l
firing, so that the discharges are mainly due to the in
signal, and therefore, evoke reliable firing. Conversely, in
second regime, the firing is mainly due to the noise rat
than the input signal. This phenomenon accounts for the
crease in reliability.

The above analysis clarified the mechanism underly
noise-enhanced reliability in the AR, and the dependenc
the optimal noise on input amplitude. In the following, w
address a different question, that of the dependence of
optimal noise on the input period. In this case, we focus
weak inputs. Figure 3 shows that, for such inputs, the o
mal noise depends little on the modulation amplitude. W
apply the linear response theory to analyze the conditions
getting high reliability or highC0.

At the limit of small modulation amplitudeA, we expand
n andJ as

n~w,t !5n0~w!1An1~w,t !1A2n2~w,t !1•••,

J~ t !5J01AJ1~ t !1A2J2~ t !1•••. ~19!

Substituting these into Eq.~11!, and regrouping the term
with the same order inA, yields the following system gov
erning the dynamics of the terms in the expansion:

]n0

]t
2L0@n0#50,

]n1

]t
2L0@n1#5Lext@n0 ,t#,

A,

]nk

]t
2L0@nk#5Lext@nk21 ,t#. ~20!

We numerically simulated the above system and chec
that for small amplitudesA, the solution up to the first orde
provided a satisfactory approximation of the solution of E
~11! @31#. Furthermore, by progressively increasing the va
of A, we checked that, while the validity of the first-ord
approximation deteriorated, by increasing the order of
expansion, one could always obtain a satisfactory appr
mation. This could be seen, for instance, from the obse
tion that, when plotted together, the graphs ofJ(t) against
time, computed directly from Eq.~11! and from the expan-
sion, could not be visually distinguished from one anoth
Finally, we also checked that the approximate values of
measuresC0 and Rel obtained from the expansion matche
those obtained with Eq.~11!. These numerical comparison
showed that the expansion provides a satisfactory appr
mation of the original system. In the following, we descri
only results obtained with the first-order term, which hig
light the dependence of the optimal noise intensity on in
period.

In the stationary regime,n0 tends ton0* , the stationary
probability density function of the unforced AR@27,20#, and
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n1 takes on the formn1(w,t)5x(w)cos(Vt)1z(w)sin(Vt),
wherex andz satisfy the following system of linear ordinar
differential equations:

D
d2x

dw2
5

d

dw
@~12a sin~w!!x#1Vz, ~21!

D
d2z

dw2
5

d

dw
@~12a sin~w!!z#2Vx1

dn0*

dw
. ~22!

The stationary linear response does not contain any te
with higher harmonics. These higher harmonics appear p
gressively if one proceeds further with the expansion. T
same goes for the expansion of the rateJ. In the stationary
regime,J0 is constant andJ1(t)5a cos(Vt)1b sin(Vt). The
coefficientsa andb can be directly evaluated fromx andz.
In this way, from Eqs.~2! and~8!, the expansions ofC0 and
Rel are

C05
A2

2
Aa21b2, ~23!

Rel5
2l2A2

a0~l2a0!~l21V2!
~a21b2!, ~24!

wherea0 depends neither onA nor V, and only onD, anda
andb do not depend onA, but only onV andD.

Using these expressions, we have numerically compu
the optimal noise intensities that maximizeC0 and Rel for
different input periods. The dependency of the optimal no
level to the input frequency is shown in Fig. 5 for bothC0
~solid curve! and Rel ~dashed curve!. The results show tha
up to aboutV50.2, the optimal noise level is almost th

FIG. 5. Optimal noise as a function of input frequency in an A
model. The curve is plotted at the noise intensity where reliabi
~solid! and C0 ~dashed! are maximal as a function of input fre
quency. The abscissa is noise intensity~rad/Ams) and ordinate is
modulation frequency~kHz!. Both reliability andC0 were com-
puted from the flux crossingw53p/2 in the first-order perturbation
with arbitrary input amplitude. Numerical computations were c
ried out by simulating the expansion of the FPE using the stand
Euler method with a time step of 0.005. All Fourier coefficients
the probability density function, expanded up to 30th order, w
initialized at the asymptotic solution of FPE in the absence
modulation. After running 50 ms, data points over a duration of
ms were analyzed. Model parameters are the same as in Fig.
4-6



ls

pu

as
a

,

m
ay

a
pli
fre
h
R

ng
-
n-
is

de
nc
ne
en
o

on
a

In

he
d

lin

an

oi
e

ilit
e
s
n

e

r
n

s
ub
ra
ile
e

te-

d fi-
the
d by
tion

ak
old.
po-
the
re-

el,
be-
eg-

is
are

lace
as
su-
ral
be-
by

ition
al-
g-

the
are

ntil
ula-
ear
re-
In

to
nal
to

gh
es.
g
or

sis

be-
uch
uron
s-
nal
fi-

al
g
be
is
ron
uch
ply

NOISE-ENHANCED NEURONAL RELIABILITY PHYSICAL REVIEW E64 041904
same no matter how slow the input is. As the frequency
increased beyond this value, the optimal noise intensity a
increases.

These results can be interpreted as follows. For low-in
frequencies, the optimal noise does not depend onV, be-
cause the system behavior can be studied through a qu
tationary assumption. For linearization by noise, this h
been previously described in@8#. For enhanced reliability
this means that the input term in Eqs.~17!–~18! varies so
slowly, that the noise-induced transition occurs at the sa
noise level as for a constant input, and therefore displ
little dependence on input frequency.

One factor influencing the increase of the optimal noise
higher frequencies is the AR’s cutting frequency: the am
tude of subthreshold oscillations decreases with input
quency, and this effect is more marked for frequencies hig
than a critical value. This is due to the properties of the A
linearized at its stable equilibrium point. In this way, keepi
A fixed, while increasingV results in smaller effective os
cillations in w, thus requiring larger noise intensities to i
duce firing, and henceforth, resulting in larger optimal no
levels for bothC0 andRel .

The above result highlights that, for weak inputs, the
pendence of the optimal noise intensity on input freque
reflects mainly the subthreshold response of the system
the equilibrium point. This effect is similar to what has be
discussed in conventional stochastic resonancelike phen
ena in the leaky integrate and fire model@32# and the
FitzHugh-Nagumo model@4#.

IV. DISCUSSION

While spike trains constitute one of the main informati
carriers in nervous systems, the encoding of input sign
into such pulse sequences can take on different forms~e.g.,
@10,33,34#!. Two of these are rate and temporal coding.
the former, the mean discharge rate of neurons conveys
formation about the input signal, while in the latter, it is t
sequence of discharge times that fills in this role. This stu
investigated the influence of noise on two quantities, the
ear correlationC0 and the reliabilityRel , which are mea-
sures related to these two forms of coding, rate coding
temporal coding. In agreement with previous studies@7–9#,
we observed that for weak inputs, some intermediate n
level maximizesC0. We also reported that under the sam
conditions, some noise also enhances neuronal reliab
However, the noise intensities at which these occur wid
differ from one another. The following paragraphs discu
the main aspects of enhanced fidelity and reliability a
clarify the differences between the two.

The measureC0 quantifies the linear relation between th
input signal and the neuron’s firing rate. For weak inputs,C0
takes low values because the response of the neuron is
tified, that is, only the suprathreshold segments of the sig
evoke discharges. The addition of some noise increaseC0
because it allows some firing to take place even for s
threshold signal segments, with a rate that is commensu
with the distance of the stimulus to the threshold. Wh
further increase in the noise further attenuates the nonlin
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distortions, it also introduces random fluctuations that de
riorateC0. The humplike dependence ofC0 on noise inten-
sity reflects the competition between these two effects@8,9#.
Thus, the main phenomenon that accounts for enhance
delity is that noise reduces the nonlinear distortions in
input-output relation of neurons such as the ones cause
the threshold. For this reason, it is referred to as lineariza
by noise@2#.

Conversely, in the case of enhanced reliability for we
inputs, the effect of noise strongly depends on the thresh
The key point here is that due to threshold, membrane
tential fluctuations abruptly increase as the system enters
noise-induced transition regime. These large fluctuations
flect neuronal firing. So, in effect, for a given noise lev
firing is possible only in segments of the signal that are
yond the transition. For low noise, there are no such s
ments when the input is subthreshold. When the noise
increased, only a few, clearly separated input segments
above the transition, so that action potentials can take p
only in these intervals: the firing is reliable. However,
noise is further increased, so does the length of the ‘‘
pratransition’’ segments, making it possible for seve
spikes to occur in each. The timing of these fluctuates
cause in the supratransition range, firing is mainly caused
noise. Thus, the abruptness of the noise-induced trans
plays an important role in noise-enhanced reliability: it
lows firing to occur in some specific preferential input se
ments, and therefore be reliable.

The above descriptions clarify the difference between
noise ranges where enhanced fidelity and reliability
reached. We observed that the noise level maximizingC0 did
not go to zero when the signal amplitude was increased u
threshold. This is because even for suprathreshold stim
tion, the neuronal firing rate can present strong nonlin
distortions due to rectification. Some amount of noise
duces these distortions and therefore improves fidelity.
contrast, the optimal noise maximizing the reliability tends
zero with the signal amplitude. This is because as the sig
amplitude is increased, lower noise levels are required
have ‘‘supratransition’’ input segments that are wide enou
to allow firing and not too wide to have several discharg
At such noise intensities, the firing is highly reliable firin
with poor fidelity due to the rectification. This accounts f
the difference between the two optimal noise intensities.

Finally, we examine the implication of the above analy
in terms of neuronal coding. High fidelity attained whenC0
is maximal means that there is a large linear correlation
tween the input signal and the output of the neuron. In s
a case, one can assume that the main function of the ne
is to transmit the input signal with as little distortion as po
sible. As this is best achieved by a linear system, neuro
nonlinearities, such as the threshold, hinder transmission
delity. In this setting, noise may play a significant function
role through linearization. Conversely, highly reliable firin
is achieved in a regime where the input-output fidelity can
poor. In this case, firing reliability indicates that the input
encoded into the sequence of discharge timing. The neu
fires in response to specific segments in the input signal s
as those that are ‘‘supratransition.’’ Thus, rather than sim
4-7
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SEIJI TANABE AND K. PAKDAMAN PHYSICAL REVIEW E 64 041904
transmitting the input it receives, the neuron is performin
feature extraction. For instance, for neurons receiving c
verging stimuli from a large number of other neurons, the
supratransition excursions may be due to almost synchron
firing of upstream units, and detecting such coincidences
been proposed as one means of signal processing in s
areas of the nervous systems@35#. In this setting, the func-
tional role played by the noise could be to increase neuro
sensitivity to such coincidences.

V. CONCLUSION

We reported an effect of noise that is different compa
with linearization, as we showed that noise can also impr
neuronal reliability. This phenomenon can be potentia
beneficial for temporal coding, which relies on precise d
charge times. For example, on the one hand, at the level
single neuron, repeated presentation of the same stim
signal would elicit reliably the same spike sequence. On
other hand, at the level of an ensemble of neurons recei
the same stimulus, noise can enhance the synchrony o
discharges among the constituting units. Furthermore,
analysis also clarified the mechanism underlying noi
enhanced reliability, by relating it to a noise-induced tran
tion that takes place in neuronal models when the noise
tensity is increased, and which separates the regime
which noise increases the sensitivity of neurons from th
in which noise-induced firing dominates. This characteri
tion, together with the description of the dependence of
optimal noise level on input frequency, should prove help
in determining whether nervous systems operate in regi
where noise-enhanced reliability can possibly take place

APPENDIX: THE HH EQUATIONS

In an ensemble of HH equations comprisingN units, the
dynamics of thei th unit are determined by the followin
system of differential equations@17#:

Cm

dVi

dt
5gNami

3hi~VNa2Vi !1gKni
4~VK2Vi !1gL~VL2Vi !

1As~ t !1j i~ t !,

dmi

dt
5am~Vi !2gm~Vi !mi ,

dhi

dt
5ah~Vi !2gh~Vi !hi ,
O

J,

tur
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dni

dt
5an~Vi !2gn~Vi !ni , ~A1!

where the variablesVi , mi , hi , and ni are the membrane
potential, the activation, and inactivation of the sodium c
rent, and the activation of the potassium current.VNa, VK ,
andVL are the reversal potentials of the sodium, potassiu
and leak currents, andgNa, gK , andgL are the corresponding
maximal conductances.s(t) is the input current. For periodic
stimuluss(t)5sin(Vt) and for aperiodic stimuluss(t) is a
sample path of a centered Ornstein-Uhlenbeck process
time constantt51 ms and standard deviation 1/A2. A de-
notes the amplitude of the stimulus.j i(t) represents white
Gaussian noise satisfyingE@j i(t)#50 and E@j i(t)j j (s)#
5s2d(t2s).

The auxiliary functionsam , ah , an , gm , gh , andgn are:

am~V!5FH 0.1~252V!

expF252V

10 G21 J ,

gm~V!5FH am~V!14 expF2
V

18G J ,

ah~V!5FH 0.07 expF2
V

20G J ,

gh~V!5FH ah~V!1
1

expF302V

10 G11J ,

an~V!5FH 0.01~102V!

expF102V

10 G11 J ,

gn~V!5FH an~V!10.125 expF2
V

80G J ,

whereF is a factor for temperature exp@(T/1020.63)ln 3#.
Parameter values used in this text areCm51.0 mF/cm2,

gNa5120 m*/cm2, gK536 m*/cm2, gL50.3 m*/cm2, F
51, VNa5115 mV, VK5212 mV, andVL510.613 mV.
The parameter values were set so that the resting potent
at V50 mV.
-
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